Robust Approximate Bilinear Programming Robust Approximate Bilinear Programming for Value Function Approximation

نویسندگان

  • Marek Petrik
  • Shlomo Zilberstein
چکیده

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing specific norms of the Bellman residual. Solving a bilinear program optimally is NP-hard, but this is unavoidable because the Bellman-residual minimization itself is NP-hard. We describe and analyze the formulation as well as a simple approximate algorithm for solving bilinear programs. The analysis shows that this algorithm offers a convergent generalization of approximate policy iteration. We also briefly analyze the behavior of bilinear programming algorithms under incomplete samples. Finally, we demonstrate that the proposed approach can consistently minimize the Bellman residual on simple benchmark problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Value Function Approximation Using Bilinear Programming

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose approximate bilinear programming, a new formulation of value function approximation that provides strong a priori guarantees. In particular, this approach provably finds an approximate value function that minimizes the Bellman residual. Sol...

متن کامل

Robust Approximate Bilinear Programming for Value Function Approximation

Value function approximation methods have been successfully used in many applications, but the prevailing techniques often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing spe...

متن کامل

Global Optimization for Value Function Approximation

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing specific norms ...

متن کامل

Bilinear Generalized Approximate Message Passing - Part I: Derivation

In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case, which enables its application to matrix completion, robust PCA, dictionary learning, and related matrix-factorization problems. Here, in Part I of a two-part paper, w...

متن کامل

On convex relaxations of quadrilinear terms

The best known method to find exact or at least ε-approximate solutions to polynomial programming problems is the spatial Branch-and-Bound algorithm, which rests on computing lower bounds to the value of the objective function to be minimized on each region that it explores. These lower bounds are often computed by solving convex relaxations of the original program. Although convex envelopes ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011